Identification and characterization of aluminum tolerance loci in Arabidopsis (Landsberg erecta x Columbia) by quantitative trait locus mapping. A physiologically simple but genetically complex trait.
نویسندگان
چکیده
Aluminum (Al) toxicity, which is caused by the solubilization of Al3+ in acid soils resulting in inhibition of root growth and nutrient/water acquisition, is a serious limitation to crop production, because up to one-half of the world's potentially arable land is acidic. To date, however, no Al tolerance genes have yet been cloned. The physiological mechanisms of tolerance are somewhat better understood; the major documented mechanism involves the Al-activated release of Al-binding organic acids from the root tip, preventing uptake into the primary site of toxicity. In this study, a quantitative trait loci analysis of Al tolerance in Arabidopsis was conducted, which also correlated Al tolerance quantitative trait locus (QTL) with physiological mechanisms of tolerance. The analysis identified two major loci, which explain approximately 40% of the variance in Al tolerance observed among recombinant inbred lines derived from Landsberg erecta (sensitive) and Columbia (tolerant). We characterized the mechanism by which tolerance is achieved, and we found that the two QTL cosegregate with an Al-activated release of malate from Arabidopsis roots. Although only two of the QTL have been identified, malate release explains nearly all (95%) of the variation in Al tolerance in this population. Al tolerance in Landsberg erecta x Columbia is more complex genetically than physiologically, in that a number of genes underlie a single physiological mechanism involving root malate release. These findings have set the stage for the subsequent cloning of the genes responsible for the Al tolerance QTL, and a genomics-based cloning strategy and initial progress on this are also discussed.
منابع مشابه
Identification and Characterization of Aluminum Tolerance Loci in Arabidopsis (Landsberg erecta 3 Columbia) by Quantitative Trait Locus Mapping. A Physiologically Simple But Genetically Complex Trait
Department of Plant Biology, Cornell University, Ithaca, New York 14853 (O.A.H., J.E.S., L.V.K.); Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599 (T.J.V.); Departamento de Genética Vegetal, Institut de Recerca i Tecnologica Agroalimentaries, Ctra. Cabrils s/n, 08348, Cabrils, Spain (A.J.M.); Institute of Natural Science, Seoul Women’s University, Seoul 139...
متن کاملMapping quantitative trait loci associated with selenate tolerance in Arabidopsis thaliana.
Selenium is essential for many organisms, but is toxic at higher levels. To investigate the genetic basis of selenate tolerance in Arabidopsis thaliana, quantitative trait loci (QTL) associated with selenate tolerance in accessions Landsberg erecta and Columbia were mapped using recombinant inbred lines (RILs). The selenate tolerance index (TI(D10) = root growth + 30 microm selenate/root growth...
متن کاملDefining the genetic architecture underlying female- and male-mediated nonrandom mating and seed yield traits in Arabidopsis.
Postpollination nonrandom mating among compatible mates is a widespread phenomenon in plants and is genetically undefined. In this study, we used the recombinant inbred line (RIL) population between Landsberg erecta and Columbia (Col) accessions of Arabidopsis (Arabidopsis thaliana) to define the genetic architecture underlying both female- and male-mediated nonrandom mating traits. To map the ...
متن کاملAtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis.
Aluminum (Al) tolerance in Arabidopsis is a genetically complex trait, yet it is mediated by a single physiological mechanism based on Al-activated root malate efflux. We investigated a possible molecular determinant for Al tolerance involving a homolog of the wheat Al-activated malate transporter, ALMT1. This gene, named AtALMT1 (At1g08430), was the best candidate from the 14-member AtALMT fam...
متن کاملIdentification of quantitative trait loci that regulate Arabidopsis root system size and plasticity.
Root system size (RSS) is a complex trait that is greatly influenced by environmental cues. Hence, both intrinsic developmental pathways and environmental-response pathways contribute to RSS. To assess the natural variation in both types of pathways, we examined the root systems of the closely related Arabidopsis ecotypes Landsberg erecta (Ler) and Columbia (Col) grown under mild osmotic stress...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 132 2 شماره
صفحات -
تاریخ انتشار 2003